Search This Blog

Friday, July 31, 2020

NEEM Education Hub - Content

Competitive Examinations:
(a) General English



(b) Numerical Aptitude



(c) Common Science and General Knowledge



Electronics and Communication Engineering
(a) Basic Electronics Engineering



(b) Circuit Design lab



Class X Material
(a) Mathematics



(b) Science



(c) English



(d) Hindi

Position of Letter in Alphabets

Position of Letter in Alphabets

Coding Decoding (Sentence)

Coding Decoding

Coding Decoding (Alphabets)

Coding Decoding

Coding Decoding (Numbers)

Coding Decoding

Different One Out (Common Science)

Different One Out (Common Science)

Different One Out (Alphabet)

Different One Out (Alphabet)1

Different One Out (Numbers)

Different One Out

Analogy of Common Science

Analogy of Common Science

Analogy of Alphabets

Analogy of Alphabets

Analogy of Numbers

Analogy of Numbers

Series of Number mixed Alphabets

Series of Number mixed Alphabets

Series of Alphabets: Exercise

Series of Alphabets: Exercise

Series of Numbers: Exercise

Series of Numbers: Exercise

Series of Alphabets: Rules

Series of Alphabets: Rules

Questions related to series of Alphabets can be asked based on certain rules:

Rule 1: Series can have forward counting numbers from A = 1, z = 26

A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z
1   2    3   4    5   6    7   8   9  10 11 12  13  14 15  16 17  18  19 20 21  22 23  24 25  26   
(Left) ------------------------------------------------------------------------------------------ (Right)
This is English alphabetical order.


Rule 2: Series can have Reverse counting numbers from A=26, Z = 1

Z   Y   X   W   V  U   T   S   R  Q  P   O   N   M   L   K    J    I    H   G  F   E   D    C  B    A
1   2    3   4    5   6    7   8   9  10 11 12  13  14 15  16 17  18  19 20 21  22 23  24 25  26   
(Left) ------------------------------------------------------------------------------------------- (Right)
This is Reverse or Opposite English alphabetical order.


Rule 3: There are two haves in English alphabets:

A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z
1   2    3   4    5   6    7   8   9  10 11 12  13  14 15  16 17  18  19 20 21  22 23  24 25  26   
(Left) ------------------------------------------------------------------------------------------ (Right)

(a) First Half in alphabetical order from left
A   B   C   D   E   F   G   H   I   J   K   L   M
1   2    3   4    5   6    7   8   9  10 11 12  13

(b) Second half in alphabetical order from left
N   O   P   Q   R   S   T   U   V   W   X   Y   Z
14 15  16 17  18  19 20 21  22 23  24 25  26 

(c) First Half in alphabetical order from right
Z   Y   X   W   V  U   T   S   R  Q  P   O   N
26 25 24 23  22 21 20  19 18 17 16 15 14

(d) Second Half in alphabetical order from right
M   L   K    J    I    H   G   F   E   D   C  B    A
13 12 11  10   9    8   7   6    5   4    3   2    1    



Rule 4: There are two haves in Reverse English alphabets:

Z   Y   X   W   V  U   T   S   R  Q  P   O   N   M   L   K    J    I    H   G  F   E   D    C  B    A
1   2    3   4    5   6    7   8   9  10 11 12  13  14 15  16 17  18  19 20 21  22 23  24 25  26   
(Left) ------------------------------------------------------------------------------------------- (Right)

(a) First Half in reverse alphabetical order from left
Z   Y   X   W   V  U   T   S   R  Q  P   O   N
1   2    3   4    5   6   7   8   9  10 11  12  13

(b) Second half in reverse alphabetical order from left
M   L   K    J    I    H   G  F   E   D    C  B    A
14 15  16 17  18  19 20 21  22 23  24 25  26   

(c) First Half in reverse alphabetical order from right
A   B   C   D   E   F   G   H   I   J   K   L   M
26 25 24 23  22 21 20  19 18 17 16 15 14

(d) Second Half in reverse alphabetical order from right
N   O   P   Q   R   S   T   U   V   W   X   Y   Z
13 12 11  10   9    8   7   6    5   4    3   2    1  

Alphabet Types:

Vowel         –          a      e        i       o       u              (5 letters)

                               1      5       9      15     21    =    51

                                  +4    +4     +6      +6


Consonant – b c d f g h j k l m n p q r s t v w x y z     (21 Letters)



Opposite Letters in English Alphabet

                    1     2      3     4     5      6      7     8     9   10    11   12   13

                    A     B     C     D     E     F     G     H     I     J     K     L     M


                    ↕     ↕      ↕      ↕     ↕      ↕      ↕      ↕     ↕    ↕      ↕     ↕     ↕


                    Z     Y     X     W    V     U     T      S    R    Q    P     O    N

                   26    25   24    23   22    21   20    19  18    17  16   15   14



Series Examples

Series: B   E   I   N   T   ?               (Series of one letter)
(a) W        (b) Y      (c) A       (d) C
Solution:

      +3          +4        +5          +6

B    →    E    →    I        N        T


So, 
Next number will be +7 after T i.e.
U    V    W    X    Y    Z    A
1    2     3     4     5    6    7
(Remember after Z,series continues again from A)
 So,                                                                                       Answer is A


Series: AZ   CX   FU   JQ   ?               (Series of two letter)
(a) OL        (b) MK      (c) OK       (d) ML
Solution:
First Letter

      +2          +3        +4    

A    →    C    →    F        J  

So, Next letter will be J   + 5    =   K   L   M   N   O ,   So, next first letter is O.


Second Letter

     - 2          - 3          - 4    

Z    →    X    →    U        Q  

So, Next letter will be Q   - 5    =   P   O   N   M   L ,   So, next first letter is L.


So the next term of the series will be OL.                         Answer is OL




Series of Numbers: Rules

Series of Numbers

Perfect Square Numbers:
12 = 1                 22 = 4               32 = 9                 42 = 16               52 = 25
62 = 36               72 = 49             82 = 64               92 = 81              102 = 100
112 = 121          122 = 144         132 = 169           142 = 196           152 = 225
162 = 256          172 = 289         182 = 324           192 = 361           202 = 400
212 = 441          222 = 484         232 = 529           242 = 576           252 = 625
262 = 676          272 = 729         282 = 784           292 = 841           302 = 900


Examples

Series: 4   9   16   25   ?    49   64 
Solution
In this series, we can see the pattern is perfect squares of 2, 3, 4, 5, .............
So next perfect square will be      6 × 6 = 36

Series: 63   80   99   120   143   ?   195
Solution:
See    63    = 64 - 1     =   8 × 8 - 1
          80    = 81 - 4     =   9 × 9 - 1
          99    = 100 - 4    =  10 × 10 - 1
          120  = 121 - 4    =  11 × 11 - 1
          143  = 144 - 4    =   12 × 12 - 1
We can see that the pattern is    a  ×  a  - 1
So next number will be               13 × 13 - 1 = 169 - 1 = 168

Series: 125   104   85   68   ?    40
Solution
See    125 = 121 + 4 = 11 × 11 + 4
           104 = 100 + 4 = 10 × 10 + 4
             85 =   81 + 4 = 9 × 9 + 4
             68 =   64 + 4 = 8 × 8 + 4
We can see that the pattern is    a × a + 4
So next number will be                7 × 7 + 4 = 49 + 4 = 53


Perfect Cube Numbers:
13 = 1                 23 = 8               33 = 27               43 = 64             53 = 125
63 = 216             73 = 343           83 = 512             93 = 729         103 = 1000
113 = 1331       123 = 1728        133 = 2197        143 = 2744       153 = 3375

Examples

Series: 8   27   64   125   ?    343  512  
Solution:
In this series, we can see the pattern is perfect cubes of 2, 3, 4, 5, .............
So next perfect cube will be         6 × 6 × 6 = 216

Series: 63   124   215   342   ?   728
Solution:
See    63    = 64 - 1     =   4 × 4 × 4 - 1
        124    = 125 - 1    =   5 × 5 × 5 - 1
        215    = 216 - 1    =   6 × 6 × 6 - 1
        342    = 343 - 1    =   7 × 7 × 7 - 1
We can see that the pattern is    a × a × a - 1
So next number will be               8 × 8 × 8 - 1 = 512 - 1 = 511

Series: 1004   733   516   347  ?    129
Solution:
See    1004 = 1000 + 4  = 10 × 10 × 10  + 4
             733 =  729 + 4   = 9 × 9 × 9        + 4
             516 =  512 + 4   = 8 × 8 × 8        + 4
             347 =  343 + 4   = 7 × 7 × 7        + 4
We can see that the pattern is     a × a × a  + 4
So next number will be                 6 × 6 × 6 + 4 = 216 + 4 = 220


Geometric Progression


In these series, first we check for the multiplicand r by dividing preceding number from the previous number in the series. We know that GP series is formed in the following manner.


a   ar   ar2  ar3  ar4 ……………………..arn-2    arn-1  


Example:

Series: 1    2    4     8    16    32     64    ?    256     512
Solution:
Divide 2 / 1 = 2,     4 / 2 = 2,     8 / 4 = 2,    .... and so on.....   So we can say that,
This is a series with a = 1 and r = 2
So series will be 
1 × 2 = 2,       2 × 2 = 4,      4 × 2 = 8,        8 × 2 = 16,         16 × 2 = 32,
32 × 2 = 64,       64 × 2 = 128
So the missing number will be 128

The same can be found using formula: ar6 - 1 = ar7 = 1 × (2)7 = 128

Series: 64    32    16    8    4    2    1     ?
Solution:
Divide 32 / 64 = 1/ 2,    16 / 32 = 1/ 2,    8 / 16 = 1 / 2,    .... and so on.....  So we can say that,
This is a series with a = 64 and r = 1/2
So series will be 
64 × 1/2 = 32,     32 × 1/2 = 16,      16 × 1/2 = 8,       8 × 1/2 = 4,      4 × 1/2 = 2,
2 × 1/2 = 1,       1 × 1/2 = 1/2 = 0.5
So the missing number will be 1/2  or  0.5

The same can be found using formula: ar6 - 1 = ar7 = 64 × (1/2)7 = 64 / 128 = 1 / 2 = 0.5   

Series: 3    4    6     10    18    ?     66    130    258
Solution:
This is a series with a = 3 and r = 2 with a difference of 2 as follows
3 × 2 - 2 = 6 - 2 = 4,                4 × 2 - 2 = 8 - 2 = 6,              6 × 2 - 2 = 12 - 2 = 10,
10 × 2 - 2 = 20 - 2 = 18          18 × 2 - 2 = 36 - 2 = 34          34 × 2 - 2 = 68 - 2 = 66
So the missing number will be 34



Arithmetic Progression:


In these series, first we check for the difference d by subtracting previous number from the preceding number in the series. We know that AP series is formed in the following manner.


a        a + d        a + 2d          a + 3d …………….. a + (n-2)d         a + (n-1)d


Example:

Series: 4      9      14    19    ?     29    34     39
Solution:
Subtracting  9 - 4 = 5,      14 - 9 = 5,      19 - 14 = 5,    .... and so on.....   So we can say that,
This is a series with a = 4 and d = 5
4 + 5 = 9,      9 + 5 = 14,      14 + 5 = 19,     19 + 5 = 24,      24 + 5 = 29, ....
So the missing number will be 24

The same can be found using formula: a + (n - 1)d = 4 + (5 - 1)× 5 = 4 + 20 = 24

Series:    37   30     23    16    9      2      ?     -12 
Solution:
Subtracting  30 - 37 = - 7,  23 - 30 = - 7,  16 - 23 = -7, .... and so on.... So we can say that,
This is a series with a = 37 and d = - 7
37 - 7 = 30,      30 - 7 = 23,     23 - 7 = 16,      16 - 7 = 9,     9 - 7 = 2,      2 - 7 = - 5
So the missing number will be (- 5)

The same can be found using formula: a + (n - 1)d = 37 + (7 - 1)× (- 7) = 37 - 42 = - 5

Arithmetic Progression with variable Difference (d):

In these series, first we check for the difference 'd' by dividing preceding number from the previous number in the series. We know that GP series is formed in the following manner.
We will see that the values of 'd' in each calculation is different but having some definite pattern. we can understood it using some examples.
Example:

Series: 2      5      9    14    20     27    ?
Solution:
Subtracting  d = 5 - 2 = 3,      d = 9 - 5 = 4,      14 - 9 = 5,    20 - 14 = 6,    27 - 20 = 7
See the sequence of d = 3       3 + 1 = 4       4 + 1 = 5       5 + 1 = 6       6 + 1 = 7
So next d will be     7 + 1 = 8
So next value in the series will be   27 + 8 = 35


Geometric Progression with variable Multiplicand (r):

In these series, first we check for the multiplicand r by dividing preceding number from the previous number in the series. We know that GP series is formed in the following manner.
We will see that the values of 'r' in each calculation is different but having some definite pattern. we can understood it using some examples.

Example:

Series:     2     6    24    120    720    ?
Solution:
Divide:   r = 6 / 2 = 3,     r = 24 / 6 = 4,    r = 120 / 24 = 5,     r = 720 / 120 = 6
See the sequence of r = 3       3 + 1 = 4       4 + 1 = 5       5 + 1 = 6   
So next r will be     6 + 1 = 7
So next value in the series will be   720 × 7 = 5040


Prime numbers:


These are the numbers which are either divisible by 1 or itself, means it has only and necessarily two factors.

1 is not a prime number because it has only one factor that is 1.

2 is only even prime number which has two factors that is 1 and 2 itself.


2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199


Series: 5    7    11    13    17    ?
Solution:
We can see that this is the series of prime numbers. So next number will be 19

Series: 3    7    13    19    29    ?
Solution:
We can see that this is the series of alternate prime numbers. 
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37
Taking alternate numbers we get     3    7    13    19    29    37
So next number will be 37

Series: 26    34    38    46    58    ?
Solution:
We can see that there is neither AP nor GP or any other theory in this series. but all numbers are even numbers.
Divide all numbers by 2, and we get
26 / 2 = 13,     34 / 2 = 17,     38 / 2 = 19,     46 / 2 = 23,     58 / 2 = 29
Here we can see the hidden prime number series 13, 17, 19, 23, 29
Next prime number will be 31
So next number in the series will be       31 × 2 = 62